
PostScript
®

UNICODE EXTENSION REFERENCE

davidnewall.com

PostScript Extensions

This document contains detailed information about extensions to the PostScript language to support UNICODE

and UTF-8-encoded strings. It is divided into two sections:

• Section 1 gives a summary of the extensions.

• Section 2 provides detailed descriptions of all extensions.

Each description is presented in the same format as the PostScript Language Reference:

extension argument
1

 ... argument
n

 extension result
1

 ... result
m

A detailed explanation of the extension.

Example

An example of the use of this extension.

The symbol ⇒ designates the values left on the operand stack by the example.

Errors: A list of errors that this extension might execute

See Also: A list of related extensions

At the head of an extension description, argument
1

 through argument
n

 are the arguments that the extension

requires, with argument
n

 being the topmost element on the operand stack. The extension pops these objects

from the operand stack and consumes them; then it executes. After executing, the extension leaves the objects

result
1

 through result
m

 on the stack, with result
m

 being the topmost element.

Normally, the operand and result names suggest either their types or their uses. Table 1 explains some

commonly used names (other than basic type names).

UNICODE Extension Summary

string utf8decode array decode UTF-8 string giving array of UNICODE values

dict array unicodeshow - paint glyphs for array in current font

a
x
 a

y
 dict array aunicodeshow - Add (a

x
, a

y
) to width of each glyph while
showing

array

c
x
 c

y
 int dict array widthunicodeshow - Add (c

x
, c

y
) to width of glyph for int while showing

array

c
x
 c

y

int a
x
 a

y
 dict array awidthunicodeshow - Combine effects of aunicodeshow and widthunicodeshow

dict array

numarray|numstring xunicodeshow - Paint glyphs for array using x widths in

numarray|numstring

dict array

numarray|numstring xyunicodeshow - Paint glyphs for array using x and y widths in

numarray|numstring

dict array

numarray|numstring yunicodeshow - Paint glyphs for array using y widths in

numarray|numstring

dict array unicodestringwidth w
x
w

y
Return width of glyphs for array in current font

proc array kunicodeshow - Execute proc between glyphs shown from array

UNICODE Extension Details

aunicodeshow a
x
 a

y
 dict array aunicodeshow -

Paints glyphs for the UNICODE values in array in a manner similar to unicodeshow;

however, while doing so, aunicodeshow adjusts the width of each glyph shown by adding

a
x
 to the glyph’s x width and a

y
 to its y width, thus modifying the spacing between glyphs.

The numbers a
x
 and a

y
 are x and y displacements in the user coordinate system, not in the

glyph coordinate system.

This extension enables fitting a string of text to a specific width by adjusting all the spacing

between glyphs by a uniform amount. For a discussion of glyph widths, see Section 5.4,

“Glyph Metric Information” of PostScript Language Reference.

Example

AdobeGlyphList dup length dict begin {

 exch [exch currentdict 3 index known

 {currentdict 3 index get aload pop}

 if] def

} forall currentdict end /Map exch def

/Helvetica 8 selectfont

14 67 moveto

Map [8220 78 111 114 109 97 108 83 112 97 99 101 8221] unicodeshow“NormalSpace”

14 47 moveto 4 0

Map [8220 87 105 100 101 83 112 97 99 101 8221] aunicodeshow“ W i d e S p a c e ”

Errors: invalidfont, nocurrentpoint, typecheck

See Also: aunicodewidthshow, kunicodeshow, unicodeshow

widthunicodeshow, xunicodeshow, xyunicodeshow, yunicodeshow

awidthunicodeshow c
x
 c

y
 int a

x
 a

y
 dict array awidthunicodeshow -

Paints glyphs for the UNICODE values in array in a manner similar to unicodeshow,

but combines the special effects of aunicodeshow and widthunicodeshow.

awidthunicodeshow adjusts the width of each glyph shown by adding a
x
 to its x width

and a
y
 to its y width, thus modifying the spacing between glyphs. Furthermore,

awidthshow modifies the width of each occurrence of the glyph for the UNICODE value

int by an additional amount (c
x
, c

y
).

This extension enables fitting a string of text to a specific width by adjusting the spacing

between all glyphs by a uniform amount, while independently controlling the width of the

glyph for a specific character, such as the space. For a discussion of glyph widths, see

Section 5.4,“Glyph Metric Information” of PostScript Language Reference.

Example

AdobeGlyphList dup length dict begin {

 exch [exch currentdict 3 index known

 {currentdict 3 index get aload pop}

 if] def

} forall currentdict end /Map exch def

/Helvetica 8 selectfont

14 67 moveto

Map [8220 78 111 114 109 97 108 32 83 112 97 99 101 8221] unicodeshow“Normal Space”

14 47 moveto

5 0 16#20 2 0

Map [8220 87 105 100 101 32 83 112 97 99 101 8221] awidthunicodeshow“ W i d e S p a c e ”

Errors: invalidfont, nocurrentpoint, typecheck

See Also: aunicodeshow, kunicodeshow, unicodeshow, widthunicodeshow

xunicodeshow, xyunicodeshow, yunicodeshow

kunicodeshow proc dict array kunicodeshow -

Paints glyphs for the UNICODE values in array in a manner similar to unicodeshow,

but allows program intervention between characters. If the values in array are int
0

, int
1

, ...

int
n

, kunicodeshow proceeds as follows: First it shows the glyph for int
0

 at the current

point, updating the current point by the width of that glyph. Then it pushes int
0

 and int
1

 on

the operand stack and executes proc. proc may perform any actions it wishes; typically, it

will modify the current point to affect the subsequent placement of the glyph for int
1

.

kunicodeshow continues by showing the glyph for int
1

, pushing int
1

 and int
2

 on the

stack, executing proc, and so on. It finishes by pushing int
n–1

 and int
n

 on the stack,

executing proc, and finally showing the glyph for int
n

.

When proc is called for the first time, the graphics state (in particular, the current

transformation matrix) is the same as it was at the time kunicodeshow was invoked,

except that the current point has been updated by the width of the glyph for int
0

.

Execution of proc is permitted to have any side effects, including changes to the graphics

state. Such changes persist from one call of proc to the next and may affect graphical output

for the remainder of kunicodeshow’s execution and afterward. When proc completes

execution, the value of currentfont is restored. The name kunicodeshow is derived from

“kern-show.” To kern glyphs is to adjust the spacing between adjacent glyphs in order to

achieve a visually pleasing result. The kunicodeshow operator enables user-defined

kerning and other manipulations, because arbitrary computations can be performed between

pairs of glyphs.

kunicodeshow can be applied only to base fonts. If the current font is a composite font or

a CIDFont, or defines neither CharProcs not CharStrings, an invalidfont error occurs.

Errors: invalidfont, nocurrentpoint, typecheck

See Also: aunicodeshow, awidthunicodeshow, kunicodeshow, unicodeshow,

widthunicodeshow, xunicodeshow, xyunicodeshow, yunicodeshow

unicodeshow dict array unicodeshow -

Paints glyphs for the UNICODE values in array on the current page starting at the current

point, using the font face, size, and orientation specified by the current font (as returned by

currentfont).

dict maps UNICODE values to potential glyph names, either as a single name or an array of

names. The current font’s CharStrings dictionary is searched for each potential glyph

name, and the first glyph found is selected. If the current font has no CharStrings

dictionary, it’s CharProcs dictionary is used instead. An invalidfont error occurs if the

font has neither CharStrings nor CharProcs.

If a UNICODE value is not mapped by dict, or if none of the potential glyph names appears

in the font’s CharStrings dictionary, uniXXXX is used as a fallback name for values less

than 16#10000 and uXXXXXXXX for values of 16#10000 and over, where XXXXXX is the

value in hexadecimal.

The spacing from each glyph to the next is determined by the glyph’s width, which is an

(x, y) displacement that is part of the glyph description. When it is finished, unicodeshow

adjusts the current point in the graphics state by the sum of the widths of all the glyphs

shown. unicodeshow requires that the current point initially be defined (for example, by

moveto); otherwise, a nocurrentpoint error occurs.

See Chapter 5 of PostScript Language Reference for complete information about the

definition, manipulation, and rendition of fonts.

Errors: invalidfont, nocurrentpoint, typecheck

See Also: moveto, setfont, aunicodeshow, aunicodewidthshow, kunicodeshow

widthunicodeshow, xunicodeshow, xyunicodeshow, yunicodeshow

unicodestringwidth dict array unicodestringwidth w
x
 w

y

Calculates the change in the current point that would occur if dict and array were given as

operands to unicodeshow with the current font. w
x
 and w

y
 are computed by adding

together the width vectors of all the individual glyphs for array and converting the result to

user space. They form a distance vector in the x and y dimensions describing the width of

the glyphs for the entire string in user space. See Section 5.4, “Glyph Metric Information,” of

PostScript Language Reference for a discussion of glyph widths.

To obtain the glyph widths, unicodestringwidth executes the descriptions of one or more

of the glyphs in the current font and may cause the results to be placed in the font cache.

However, unicodestringwidth prevents the graphics operators that are executed from

painting anything onto the current page.

Note that the width returned by unicodestringwidth is defined as movement of the

current point. It has nothing to do with the dimensions of the glyph outlines (see charpath

and pathbbox).

Errors: invalidfont, typecheck

See Also: setfont, unicodeshow

utf8decode string utf8decode array

Returns an array object containing UNICODE values decoded from string, which is encoded

using UTF-8 variable-width character encoding. Invalid UTF-8 sequences are replaced with

Unicode Character ‘REPLACEMENT CHARACTER’ (U+FFFD).

Example

(\342\200\234UTF-8\342\200\235) utf8decode ⇒ [8220 85 84 70 45 56 8221]

widthunicodeshow c
x
 c

y
 int dict array widthunicodeshow -

Paints glyphs for the UNICODE values in array in a manner similar to unicodeshow;

however, while doing so, it adjusts the width of each occurrence of the glyph for UNICODE

value int shown by adding c
x
 to its x width and c

y
 to its y width, thus modifying the spacing

between it and the next glyph. This operator enables fitting a string of text to a specific

width by adjusting the width of the glyph for a specific character, such as the space character.

Example

AdobeGlyphList dup length dict begin {

 exch [exch currentdict 3 index known

 {currentdict 3 index get aload pop}

 if] def

} forall currentdict end /Map exch def

/Helvetica 8 selectfont

14 67 moveto

Map [8220 78 111 114 109 97 108 32 83 112 97 99 101 8221] unicodeshow“Normal Space”

14 47 moveto 6 0 16#20

Map [8220 87 105 100 101 32 83 112 97 99 101 8221] widthunicodeshow“Wide Space”

Errors: invalidfont, nocurrentpoint, typecheck

See Also: aunicodeshow, aunicodewidthshow, kunicodeshow, unicodeshow

xunicodeshow, xyunicodeshow, yunicodeshow, unicodestringwidth

xunicodeshow dict array numarray xunicodeshow -

dict array numstring xunicodeshow -

Is similar to xyshow; however, for each glyph shown, xshow extracts only one

number from numarray or numstring. It uses that number as the x displacement and the

value 0 as the y displacement. In all other respects, xshow behaves the same as xyshow.

Errors: invalidfont, nocurrentpoint, typecheck

See Also: unicodeshow, xyunicodeshow, yunicodeshow

xyunicodeshow dict array numarray xyunicodeshow -

dict array numstring xyunicodeshow -

Paints glyphs for the UNICODE values in array in a manner similar to unicodeshow.

After painting each glyph, it extracts two successive numbers from the array numarray or

the encoded number string numstring. These two numbers, interpreted in user space,

determine the position of the origin of the next glyph relative to the origin of the glyph just

shown. The first number is the x displacement and the second number is the y displacement.

In other words, the two numbers override the glyph’s normal width.

If numarray or numstring is exhausted before all values in array have been shown, a

rangecheck error occurs. See Section 5.1.4, “Glyph Positioning,” in PostScript Language

Reference for information about xyshow, and Section 3.14.5, “Encoded Number Strings,”

for an explanation of the numstring operand.

Errors: invalidfont, nocurrentpoint, rangecheck, typecheck

See Also: unicodeshow, xunicodeshow, yunicodeshow

yunicodeshow dict array numarray yunicodeshow -

dict array numstring yunicodeshow -

Is similar to xyshow; however, for each glyph shown, yshow extracts only one

number from numarray or numstring. It uses that number as the y displacement and the

value 0 as the x displacement. In all other respects, yshow behaves the same as xshow.

Errors: invalidfont, nocurrentpoint, rangecheck, typecheck

See Also: unicodeshow, xyunicodeshow, yunicodeshow

